Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 46: 8-13, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223212

ABSTRACT

BACKGROUND: Poly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed. RESULT: S17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content. CONCLUSION: The impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.


Subject(s)
Escherichia coli/metabolism , Hydroxybutyrates/metabolism , Repressor Proteins/genetics , Biopolymers/genetics , Recombinant Proteins , RNA-Binding Proteins/genetics , Gene Deletion , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Metabolic Engineering , Ligases/metabolism
2.
Biol. Res ; 52: 5, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011408

ABSTRACT

BACKGROUND: A moderately thermophilic, slightly halophilic, aerobic, Gram-stain negative, bacterial strain, SLM16, was isolated from a mixed of seawater-sand-sediment sample collected from a coastal fumarole located in Whalers Bay, Deception Island, Antarctica. The aim was to screen for thermophilic microorganisms able to degrade primary amines and search for amine transaminase activity for potential industrial application. RESULTS: Identification and partial characterization of the microorganism SLM16 were carried out by means of morphological, physiological and biochemical tests along with molecular methods. Cells of strain SLM16 were non-motile irregular rods of 1.5-2.5 µm long and 0.3-0.45 µm wide. Growth occurred in the presence of 0.5-5.5% NaCl within temperature range of 35-55 °C and pH range of 5.5-9.5, respectively. The DNA G+C composition, estimated from ftsY gene, was 66% mol. Phylogenetic analysis using de 16S rRNA gene sequence showed that strain SLM16 belongs to the marine bacterial genus Albidovulum. CONCLUSION: Strain SLM16 is a moderate thermophilic Gram negative microorganisms which belongs to the marine bacterial genus Albidovulum and is closely related to Albidovulum inexpectatum species based on phylogenetic analysis. Additionally, amine-transaminase activity towards the arylaliphatic amine α-methylbenzylamine was detected.


Subject(s)
Seawater/microbiology , DNA, Bacterial/genetics , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/enzymology , Transaminases/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Rhodobacteraceae/classification , Antarctic Regions
3.
Biol. Res ; 51: 55, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011399

ABSTRACT

BACKGROUND: The Antarctic continent is a source of extreme microorganisms. Millions of years of isolation have produced unique biodiversity with adaptive responses to its extreme environment. Although the Antarctic climate is mainly cold, the presence of several geothermal sites, including thermal springs, fumaroles, hot soils and hydrothermal vents, provides ideal environments for the development of thermophilic and hyperthermophilic microorganisms. Their enzymes, called thermoenzymes, are the focus of interest in both academic and industrial research, mainly due to their high thermal activity and stability. Glutamate dehydrogenase, is an enzyme that plays a key role in the metabolism of carbon and nitrogen catalyzing reversibly the oxidative deamination of glutamate to alpha-ketoglutarate and ammonium. It belongs to the family of oxidoreductases, is widely distributed and it has been highly regarded for use as biosensors, particularly for their specificity and ability to operate in photochemical and electrochemical systems. However, the use of enzymes as biosensors is relatively problematic due to their instability to high temperatures, organic solvents and denaturing agents. The purpose of this study is to present the partial characterization of a thermophilic microorganism isolated from Deception Island, Antarctica, that displays glutamate dehydrogenase activity. RESULTS: In this work, we report the isolation of a thermophilic microorganism called PID15 from samples of Deception Island collected during the Antarctic Scientific Expedition ECA 46. This microorganism is a thermophile that grows optimally at 50 °C and pH 8.0. Scanning electron microscopy shows rod cells of 2.0 to 8.0 µm of length. Phylogenetic analysis of 16S rRNA gene revealed that this microorganism is closely related to Bacillus gelatini. This microorganism contains a thermostable glutamate dehydrogenase with optimal activity at pH 8.0 and temperatures for its activity from 37 to 50 °C, range of temperature of interest for biotechnological applications. This glutamate dehydrogenase is a highly thermostable enzyme. CONCLUSION: This is the first report of a microorganism from Antarctica containing a thermostable glutamate dehydrogenase that maintains its activity in a broad range of temperatures making it of potential interest for biotechnological applications.


Subject(s)
Animals , Bacteria/enzymology , Extremophiles/enzymology , Glutamate Dehydrogenase/analysis , Phylogeny , Time Factors , Bacteria/growth & development , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Microscopy, Electron, Transmission , Islands , Extremophiles/growth & development , Extremophiles/genetics , Antarctic Regions
4.
Biol. Res ; 51: 37, 2018. tab
Article in English | LILACS | ID: biblio-983949

ABSTRACT

To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.


Subject(s)
Biotechnology/methods , Archaea/enzymology , Enzymes/classification , Enzymes/chemistry , Extreme Environments , Biocatalysis
SELECTION OF CITATIONS
SEARCH DETAIL